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The trapping of gravity waves over a circular sill, originally studied by Longuet- 
Higgins (1967), is re-examined in the limit 6 = d , / d  4 0 with A = u2d /g  = O( l) ,  where 
d ,  is the depth over the sill, d the outer depth, and u the angular frequency of the 
incident wave. Explicit results are obtained for the resonance curves. These results 
are in qualitative agreement with the corresponding shallow-water approximations 
( A  < 1 )  of Longuet-Higgins, which have been questioned by Renardy (1983). A 
remarkably simple result is obtained for the mean-square response to a broadband, 
randomly phased incident wave. 

1. Introduction 
Following Longuet-Higgins (1967), Pite (1977) and Renardy (1983), I consider the 

motion induced over a circular sill by a gravity wave incident from a laterally 
unbounded ocean. (The corresponding scattering problem has been treated by Black, 
Mei & Bray (1971), although they did not consider the strong resonances that are 
of primary concern here.) The basic similarity parameters are 

(1 .1  a, b,  c) 

where (see figure 1)  a is the radius of the sill, d ,  is the depth over the sill, d is the 
depth of the outer ocean, and u is the angular frequency of the incident wave. 

The wave motion is resonantly amplified over the sill if 6 4 1 and k, a approximates 
j,,, one of the doubly infinite, discrete set of positive zeros of the Bessel functions 
J,, where the wavenumber k,  is determined by 

k, d ,  tanh k, d, = 6A. (1.2) 

The corresponding reciprocal Q (to which the radiation damping is proportional) has 
the form [see (4.6)] 

(1-3) 
1 
- = SF(ka, kd, k ,  d , ) ,  
Q 

where the wavenumber k is determined by 

kd tanh kd = A. 

The corresponding measure of viscous damping in the boundary layers at the free 
surface and over the surface of the sill is given by (Miles 1967a) 

(1.4) 

1 8  v t C+sech2k,d, - Q=E=kl (G)  ( 
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FIQURE 1. Cross-section of circular sill in laterally unbounded ocean of depth d. 

where 2 is the mean dissipation rate per unit area, E is the energy per unit area 
(integrated over a vertical column), v is the kinematic viscosity, and C is a parameter 
that varies from 0 for a clean free surface through a maximum of 2 for a contaminated 
surface to an asymptotic value of 1 for an inextensible film (representative values 
for the open sea and a laboratory tank are 0 and 1 respectively). The kinematic 
viscosity may be replaced by an eddy viscosity in the coefficient of sech2 k, d ,  if the 
boundary layer over the sill is turbulent. The reciprocal Q given by (1.5) must be 
added to that given by (1.3) to obtain the total damping for each mode. 

Longuet-Higgins (1967) assumes h 4 1 and invokes continuity of pressure and 
mass flux across the annular aperture (the projection of the cylindrical boundary from 
the sill to the free surface) to match an interior superposition of standing waves to 
an exterior superposition of incident and reflected waves. This procedure, which is 
exact in the limit h $0  with a and 6 fixed, neglects the interior and exterior families 
of non-propagated modes that are excited by the geometrical discontinuity at, and 
fall off exponentially from, the aperture. Longuet-Higgins also considers the effects 
of the Earth’s rotation (significant for very long gravity waves), viscous damping 
[obtaining the counterpart of (1.5) above for C = 0 and k, d ,  4 13, an incident pulse, 
and a broadband, randomly phased wave. His approximations appear to be 
quantitatively adequate for very long waves in the real ocean, but not for typical 
laboratory configurations. 

Pite (1977) does not impose the restriction A 4 1 and incorporates an artificial 
damping of Rayleigh’s type (specific force proportional to velocity, which is compatible 
with irrotational motion). He, too, neglects the non-propagated modes (but without 
the rational justification provided by h 4 1 )  and matches the propagating modes 
through continuity of pressure and energy flux (rather than mass flux). He obtains 
moderately good agreement between laboratory measurements and his analytical 
calculations using an experimentally inferred friction coefficient. This agreement 
notwithstanding, the introduction of Rayleigh-type friction does not appear to offer 
any advantage over, and is less realistic than, the conventional procedure of 
calculating boundary-layer dissipation as a small perturbation on the inviscid flow 
(cf. Longuet-Higgins 1967 and Miles 1967a). Nor does Pite’s somewhat arbitrary 
procedure of using the full dispersion relation (1.4) but neglecting the non-propagated 
modes appear to offer any advantage over the straightforward solution of the 
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scattering problem followed by simplification for S < 1 or other parametric 
restrictions. 

Renardy (1983), apparently unaware of the antecedent work of Black et al. (1971), 
examines the full linear problem and concludes that Longuet-Higgins’s approximate 
solution may yield rather misleading results. It is clear that the shallow-water 
approximation may be quantitatively inadequate if kd is not small, but Renardy 
concludes that it may be qualitatively wrong in predicting strong amplification for 
each of the aforementioned resonances if 6 4 1 .  It appears to me, however, that 
Renardy ’s conclusion is based on an inappropriate comparison and on an erroneous 
order-of-magnitude estimate for an infinite series (her X). The resonant frequencies 
of the interior waves, say bmn, differ from those determined by the aforementioned 
zeros of the Bessel functions, say umn, by O(6)t in the limit 640. The difference 
bmn - urn, comprises a contribution from the corresponding radiated mode together 
with contributions from the non-propagated modes ; Longuet-Higgins’s calculation 
allows for the former but not for the latter, whereas Renardy’s calculation (as well 
as the present calculation) allows for both. The contributions of the interior and 
exterior non-propagated modes are proportional to 6X and S Y  respectively, in 
Renardy’s notation, and she alleges that X = O(1/S2) and Y = O(1). In fact, 
X = O(1nS) (see Appendix A), and her numerical estimates of Cmn appear to differ 
from those of LonguetlHiggins only by O(6).  But this difference is of the same order 
as the width of the resonance curve, which is measured by (1.3) above, and the 
calculation of the resonant peaks using Longuet-Higgins’s approximations to b,, in 
Renardy ’s formulation is manifestly misleading. 

Experiments designed to test the above theoretical predictions have been carried 
out by Pite (see above) and Barnard, Pritchard & Provis (1983), who find ‘no 
evidence. . . to suggest the occurrence of the dramatic resonances predicted theoreti- 
cally’ and conclude that ‘The reason why there is such a large disparity between 
[their] experimental results and the theoretical model is not understood ’. They do, 
however, suggest several possible causes for the disparity, and Pritchard recently 
(private communication) has conjectured that the most likely explanation is that the 
wave response is ‘dominated by reflections between the island and the wavemaker’. 

Against this background, it seemed to me to be worthwhile to re-examine the limit 
64 0 and to obtain explicit, analytical representations of Q and b,, - urn, in this limit. 
I give the basic formulation in $2, starting from the assumption of a monochromatic 
incident wave in a homogeneous, inviscid liquid. In $3, I construct interior (over the 
sill) and exterior solutions through separation of variables. These solutions comprise 
the exterior disturbance for a vertical cylinder that penetrates the free surface 
augmented by additional disturbances that may be regarded as excited by the 
(unknown) radial velocity in the aperture. The continuity of the velocity potential 
across the aperture provides an integral equation for this aperture velocity, which 
may be expanded in the normal modes of the sill to obtain an infinite set of linear 
equations for the expansion coefficients. I find that this set may be diagonalized in 
the limit 840 to obtain the surface-wave amplitude over the sill within an error factor 
of 1 + O(6) .  This provides first approximations to bmn - gmn and l /Q,  which I exploit 
in $5 to obtain a uniformly valid approximation to the resonance curve. I find that, 
in this approximation, the non-propagated modes make no contribution to Q and that 
only the exterior non-propagated modes contribute to bmn-umn. (I differ from 
Renardy in the latter conclusion.) 

t O(6) implicitly includes O(S 1nS). 
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In  most problems of oceanographic interest the incidcnt wave is random and 
represented by power and directional spectra, which describe the energy distribution 
over frequency and angle of incidence, and it then is the integral of the square of the 
complex amplitude over each of the resonant peaks that is of primary interest. I 
consider this problem in $6 and obtain the remarkably simple result [see (6.4)] 

for the mean-square displacement (averaged over both time and the sill) of the free 
surface, where P is the power spectrum of the incident wave, defined such that 

j,, is the nth positive zero of J,, and C is a depth-dependent factor that reduces 
to 1 in the limit A $ O .  

I conclude that Longuet-Higgins's formulation and results are qualitatively valid, 
at least for 6 4 1,  which is the domain of principal interest (since resonant 
amplification is otherwise small). 

2. Formulation 
The monochromatic incident wave is described by the real part of 

5 = go ei(kr cos e--ot) ( 2 . 1 ~ )  
'x 

= goee-iqt C emimJ,(kr) cosm0 (em = 2-6,,), (2.1b) 
m-0 

where [is the complex displacement of the free surface, r ,  0 and z are cylindrical polar 
coordinates (see figure l ) ,  C0 is the complex amplitude of [ at the origin, CT is the 
angular frequency, So, is the Kronecker delta, and J, is a Bessel function. The 
corresponding complex velocity potential is determined by 

$r = 0 ( r  = a ,  - d  < z < -a,), (2.4) 

and the radiation condition 

where A(8)  is a dimensionless scattering amplitude (see Appendix B). 
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3. Separation of variables 

(2.2)-(2.6) in the form [cf. (2.1 b ) ]  
Following Miles & Gilbert (1968) or Black et al. (1971)’ we pose the solution of 

where 

00 

# = (iv)-1 gco e+” X em imGm(r, z )  cos me, 

5 = [Oe-iut Z em imGm(r, 0) cosme, 

m-o 
m 

m-0 

Jm and H, = Hg) are Bessel and Hankel functions of the first kind, 

I, and Km are modified Bessel functions of the first and second kind, 

sin 2 ~ d ,  -4 
cosK(z+d,) (n = 1,2), 

2Kd, 1 Z?’(Z) = d[l+ 

( 3 . 1 ~ )  

(3.lb) 

( 3 . 2 ~ )  

(3.2b) 

(3.3) 

(3.4a, b) 

(3.5) 

d ,  EE d,  and the summations in (3.2) are over the eigenvalues determined by 

~ , d ,  tanK,d, = - - d, = -A, (n = 1.2). (3.6) 

The Z?) constitute a complete, orthonormal set in -d, < z < 0. The eigenvalues 
comprise an infinite discrete set of positive real members and a single imaginary 
member, K, = -ik, (k, = k), for which (3.4)-(3.6) transform to 

(3 

( 3 . 7 ~ ~  b) 

and k,d, tanhk,d, = A,  (n = 1,2). (3.9) 

(The negative real eigenvalues and the positive imaginary eigenvalue ik, are 
redundant; the positive imaginary eigenvalue ik, is ruled out by the radiation 
condition. ) 

Those modes for which K is real decay exponentially with I r -  a I, by virtue of which 
the solution in the interior domain is dominated by the oscillatory mode described 
by (3.7a) and (3.8), and (3.1 b), may be approximated by 

m c -  [oee-iut Z emimA~G~)( - ik l r )Z1(0)  cosme (AT = AYiikl). (3.10) 
m-o 
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The corresponding approximation to the mean-square displacement, averaged over 
both the sill and time, is given by 

-- [ I +  (k:a2-m2) G k ( k , a ) l  [ ~ , ( 0 ) 1 2 ,  (3.11) 

where !j 15, is the mean-square of the incident wave (2.1), and 

(3.12) 

The first term on the right-hand side of (3.2b) represents the solution for a circular 
cylinder that penetrates the free surface, for which d ,  = 0 and (2.2), (2.3) and (2.5a, b )  
hold only in r > a. The remaining terms in (3.2) may be regarded as driven by the 
radial velocity in the annular aperture, which we represent by 

(3.13) 

Substituting ( 3 . 2 ~ )  into (3.13) and invoking the orthogonality of the ZP), we obtain 

1 0  
u,(z) = A? Zil)(z), A: = - f u,(z) Z;l)(z) dz = (u, Z?)), (3.14a, b)  

KI d l  -dl 

where, here and subsequently, ( ) denotes a vertical average over the aperture. 
Substituting (3.2b) into (3.13) and augmenting the result with a@,/& = 0 in 
- d  < z < -al, which follows from (2.4), we obtain 

( 3 . 1 5 ~ )  

= S x A F ( Z P ) Z P ) ) ,  (3.15b) 

where (3.15b) follows from ( 3 . 1 5 ~ )  through ( 3 . 1 4 ~ ) .  [The substitution of (3.14b) and 
( 3 . 1 5 ~ )  into (3.16) yields an integral equation for u,(z), which provides the basis for 
a variational formulation of the scattering problem (Miles 1967b, 1971 ; Black et al. 
197 1 ).] 

Invoking the continuity of q5, which in turn implies the continuity of Qm, across 
the aperture, we obtain 

K I  

Multiplying (3.16) through by ZF)(z ) ,  averaging the result over the aperture, and 
eliminating B? through (3.15b), we obtain the infinite matrix equation 

[a,” G 3 P 4  + Sc;Iw3 = V p ,  (3.17) 

where y and v span the complete set {K,} ,  

and (3.19) 
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4. Narrowaperture approximation (6 4 1) 
A uniformly valid first approximation to the solution of (3.17) for S -4 1 may be 

obtained by neglecting 6CF except in the resonant neighbourhoods defmed by 
GG)( -&a) = G,(k,a) = O(6); in particular, 

Setting ,u = -ik, in (3.19) and invoking (3.3) and the Wronskian relation 

J m ( z )  H k ( ~ ) - J k ( z )  H,(z) = i[J,(z) Y ~ ( z ) - J ~ ( x )  Y,(X)] = - RX' (4.2) 
2i 

(4.3~4, b) 

Setting ,u = v = -ikl in (3.18) and simplifying the imaginary part of the result with 
the aid of (4.2) and (4.3b) (note that Gg) is real except for K = -ik), we obtain 

(4.4) Cy: = -Z Gg)(Ka) (2,2p))2 = -R,+;ti(SQ)-', 

R, = Re Gg)(  -ika) (2, 2,), +Z G g ) ( ~ a )  (2, Zp)),, 

KI 

where (see also Appendix A) 

(4.5) 
Ka 

in which the summation now is over the real roots of (3.6), and 

1 
- = ~61 Fm(ka) 1, (2, 2,),. 
Q 

Substituting (4.4) into (4.1), we obtain 

where, here and subsequently, an error factor of 1 + O(6) is implicit. 

5. Resonant peaks 
The resonant frequencies correspond to the zeros of the real part of the denominator 

of (4.7), which, in turn, correspond to the positive zeros of J ,  in the limit 640. 
Expanding (3.12) about one of these zeros, jmn(O < j , ,  < j , ,  < ...), we obtain 

which is, by definition, O(6) in the neighbourhood of resonance. Substituting (5.1) into 
(4.7) and introducing 

we obtain 

urn, = [(E) j , ,  tanhe$)]', i?,, = gmn(l  +SR,), (5.2a, b )  

(5.3) 
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w s 4 t  
(m,4  j,, kl dl LH (5.2) A,, -4, 4 6 . 6 )  Q(4.6) 

2 ,1  5.136 0.041 4.92 4.75 16.23 11.88 14.96 34.1 
8, 1 12.225 0.098 12.12 11.95 3895 0.0797 2791 2.51 x lo6 

TABLE 1. The amplification factor A for 6 = Ifj and 01 = 125, as calculated from Longuet-Higgins 
(1967), Renardy (1983) and (5.5) herein for two particular resonances. The values of I H L  I required 
in (5.5) were taken from Morse & Feshbach (1953). 

We note that, within this resonant neighbourhood, k is determined by 

The resonant maximum of IAyI is 2QlDYl. The corresponding maximum of 
Longuet-Higgins’s (1967) amplification factor (I A, 1 in his notation, wherein n 
corresponds to m herein) is given by 

in which k ,  a may be approximated by j,, and k is determined by (5.4). 
The results given by (5.3), (5.5) and (4.6) for two particular cases are compared 

with Longuet-Higgins’s approximation and Renardy’s (1983) ‘full linear theory ’ 
calculation in table 1. The differences between the Longuet-Higgins and present 
approximations for the (2 , l )  mode are within the expected error factor for 1 +0(6). 
The corresponding difference in A for the (8’1) mode stems in part (a factor of 0.90) 
from the correction for finite depth but mainly from differences in the numerical 
calculations (I believe that the present method is more accurate if Q B 1 ; however, 
dissipation must be significant, especially a t  laboratory scales, in the determination 
of the actual Q for these higher modes). The difference between Longuet-Higgins’s 
and Renardy’s results appears to stem from the O(S) differences in their respective 
approximations to the resonant frequencies (see discussion in $1). 

6. Broadband excitation 
The preceding results are for a monochromatic incident wave, whereas the 

spectrum of the incident disturbance is typically much wider than the width of the 
resonant peaks ( -  vmn/Q). Let P(v) and D(e,),  where Si is the angle of incidence, 
be the power and directional spectra of the incident wave, normalized according to 

JOw P(v)da  = g, Jlz q e i ) d e i  = 1. (6.la,  b) 

The mean-square displacement, averaged over both the sill and time on the 
assumption that the contributions of the resonant peaks dominate the contribution 
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of the non-resonant part of the spectrum [the error factor associated with this 
approximation is l+O(S)],  is given by [cf. (3.10) and (3.11)] 

(6.2b) 
m-o n-1 3mn J O  

where (6.2 b) follows from ( 6 . 2 ~ )  after carrying out the integrations with respect to 
r,  8 and a,, invoking (6.1 b),  letting k,a = jmn, summing over n, and invoking 
Gl(jmn) = 0. Invoking (5.3), integrating over the resonant peak(s), and substituting 
( 4 . 3 ~ )  and (4.6) into the result, we obtain 

within 1 + O(6).  Substituting (6.3) into (6.2b) and invoking (5.2a), we obtain 

wherein k, =jmn/a and k is implicitly determined by (5.4) in [Z1(O)/Z2(0)]. 

&,/(&,+&,) in (6.4), where Q, and Q, are given by (1.5) and (4.6) respectively. 
The incorporation of viscous damping requires the introduction of the factor 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE-81-17539, and by the Office of Naval Research, 
Contract N00014-84-K-0137, NR 062-318 (430). 

Appendix A. Approximations to R, 
We consider approximations to the series in (4.5), 

S, = C, Gg)(Ka) (2, 2p)>2 
K 1  

where the summation is over the infinite, discrete set of real roots of (3.6) with d, = d 
therein. 

We first suppose that a 
A 4 1 ,  -=as%.. 

d (A 2% b) 

It follows from (A 2a) that the real roots of (3.6) may be approximated by 

K = (7) [1+0(3] ( n  = 1,2,  ...). 

Substituting (A 3) into (3.4b) and invoking (A 2b)  and the asymptotic approximation 
to K,, we obtain 

Gg)(Ka) - - (m2 + K2a2)-1 (A 4a) 
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Substituting (A 3) into (3.5) and invoking 6 = d,/d, we obtain 

Substituting (A 3), (A 4b)  and (A 5 )  into (A I) ,  we obtain 

where X is the series that  appears in Renardy’s equation (4.5), which is equivalent 
to (4.7) herein, after invoking (A 2), if the series Y is neglected, or to  Longuet-Higgins’s 
equation (7.7) if both X and Y are neglected. Renardy alleges that X = O(1/S2) as 
640; in fact, X = O(ln6), as is evident from the transformation [cf. Mangulis 1965, 
5 3 ~ ~ 1  

1 O3 l-cos2n7c6 nx=- x 
n2d2 n-1 n3 

+ O ( E  In&) [eJO, 6 = o(E) ]  (A 7c) 
t dt 

=-2ln(2716)+5+0(&1n6) ( E =  8). (A 7 4  

Now suppose that 

It follows from (A 8a) and (3.5) that 

’p’, (k2tK2)i - (K cosK%+k sinm), 

the real-K spectrum is continuous over (0, m),  and 

where, here and subsequently, error factors of 1 + O( l / A )  are implicit. The approxi- 
mations in 54 remain valid, but with implicit error factors of 1 +O(A,) rather than 
1 + O(6).  Substituting 

2 K sin Kd, + k cos Kd, 
(‘1 ’?’) - (m)i (&) ( 

d, 

into (A i) ,  invoking (A lo), introducing the new variable u = Kd,, invoking (A 4a)  
by virtue of (A 8c), and comparing with the correspondin result for a two-dimensional 
shelf [Miles 1967, equations (6.6) and (6.10) with B = A1 4 1 therein], we obtain 

F 

(A 12a) 
(u sin u + A, cos u)2 u2 du 

where 

(A 12 b )  

We remark that Cmn-umn = O ( l / a ) ,  rather than 0(6), in this approximation. 
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Appendix B. Scattering amplitude 
Letting kr? cm in (3.2b), invoking 

H,(kr) - i-"($ckr)f ei(kr-N (kr?  a), (B 1)  

substituting into (3.1 b), invoking (2.1), and comparing the result with (2.6), we obtain 

It follows from (3.15b) that BYiIL,, = O(6) except near resonance, where it may be 
approximated by 

The resonant peak value, obtained by substituting A r  = -2iQD7 from (5.3) and 
invoking (4.3) and (4.6), is 

BTik = SAT (Z,Z,) [I  +O(S)] .  (B 3) 

BYik = H;(ka) G J&(ka)-iY&(ku). (B 4) 

Thus, the square-bracketed term in (B 2) varies from -J&(ka) at non-resonant points 
to -iYk(ka) at resonant points. 
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